A Paradigm Shift in Skeletal Reconstruction

Product and Market Opportunities

The TRS technology platform is ideally suited for a variety of important clinical applications. Our long term objective is to develop comprehensive skeletal reconstruction product lines targeted at three distinct markets, including craniomaxillofacial (CMF) surgery, orthopedic surgery, and spine fusion surgery. Our strategy is to achieve this objective by means of internal product development, selectively complemented by corporate partnership.

CMF Surgery

This will be the first commercial target for TRS and is the current focus our product development efforts. Working with our Surgeon Advisory Board, we have conceptualized a family of advanced bioresorbable implants to address several challenging clinical indications in CMF surgery. For complex CMF skeletal repair or reconstruction, the current surgical gold standard is the use of metal plate and screw systems or the harvest and implantation of autologous bone graft taken from the patient's hip, fibula or scapula. Other indications, such as cranioplasty and dental implant surgery, are currently addressed by the use of harvested bone graft, bone substitutes, or expensive biologic products. TRS implants offer compelling advantages to CMF surgery.

  • For more complex cases, they eliminate the need for autologous bone graft harvest, a secondary surgery that is time consuming, costly, and frequently associated with complications.
  • They do not require the use of metal plates and screws, which are often associated with poor aesthetic and functional outcomes in CMF anatomy.
  • Unlike metal implants, they are bioresorbable and never require a second surgery for hardware removal and the associated costs.
  • They are differentiated by their osteoconductive coating that actively promotes natural bone formation, reducing the need to use expensive growth factor products.
complex-cranial-bone-trauma excised-mandible-tumor
Complex Cranial Bone Trauma Excised Mandible Tumor


Orthopedic Surgery

In addition to CMF surgery, TRS technology is an ideal platform for the development of differential products in the orthopedic surgery market.

  • For orthopedic surgical procedures to reconstruct large skeletal defects resulting from significant and complex trauma or tumor removal, similar to CMF surgery, TRS implants offer compelling advantages over the use of metal plate and screw products. They have similar structural integrity but, unlike metal implants, they directly promote rapid bone formation and are fully bioresorbable over time, eliminating the need for hardware removal surgery.
  • Soft tissue injury repair is another orthopedic surgery procedure where TRS technology can advance patient care. In this procedure the clinical challenge is to restore a strong attachment of soft tissue structures to bone, a common requirement in rotator cuff repair surgery as well as reconstructive surgery for knee ligament repair. TRS implants are perfectly suited for this application given the accelerated bone growth and integration promoted by their unique osteoconductive coating.
  • TRS coating technology can also be applied to metallic hip and knee replacement implant systems to accelerate bone formation around their fixation stems and strengthen permanent attachment.
long-bone-tumor-resulting-in-fracture rotator-cuff-re-attachment-to-bone hip-replacement-implant-anchored-in-femur
Long Bone Tumor
Resulting in Fracture
Rotator Cuff
Re-Attachment to Bone
Hip Replacement
Implant Anchored in Femur


Spine Fusion Surgery

Although the last decade has witnessed the development of new implant technologies intended to displace conventional spine fusion surgery, fusion remains the gold standard therapy for serious degenerative conditions of the cervical and lumbar spine. There are a variety of implant technologies and products currently marketed for insertion into the disc space as part of the spine fusion procedure. These include metallic cages, spacers made of inert, non-metallic materials, and dowels constructed from cadaveric bone. While fusion implant technologies and insertion procedures may differ, their common purpose is to stabilize the disc space and maintain proper spacing between vertebral bodies while bone growth occurs to form a solid bony bridge that fuses the two vertebra together. Spine fusion implants constructed from TRS technology have several important advantages.

  • Like current metallic ages and spacers, they are strong enough to maintain proper vertebral body spacing and can readily be constructed into any desired shape in order to optimize ease of insertion.
  • Unlike metallic cages and spacers. they are bioresorbable over time, so no foreign material remains in the disc space once the fusion process is complete.
  • As opposed to current cages and spacer products constructed from inert materials, they are differentiated by their osteoconductive coating and ability to bind and time-release bone growth factors to actively promote bone formation, which is the key to achieving successful and permanent spine fusion.
  • They deliver bone growth factors locally, and in a more controlled fashion, lessening problematic side effects such as heterotopic bone formation and systemic dispersion of the growth factor.
  • They closely resemble cadaveric bone dowels in both form and function, but are synthetic and do not have the sourcing, variations in quality, processing challenges, or expense associated with the use of cadaveric material.
Interbody Spine Fusion Cage